Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

K. Anitha and R. K. Rajaram*

Department of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail:
rkrsopmku@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.062$
$w R$ factor $=0.188$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

DL-Phenylalanine DL-phenylalaninium picrate

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$, the phenylalanine cation forms a strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with a phenylalanine zwitterion and is involved in a $D L 1$ head-to-tail sequence. Each of the phenylalanine residues adopts a folded conformation. In the crystal structure, the hydrophobic double layers are aggregated about the $y=0$ plane and sandwiched between hydrophilic layers about the $y=\frac{1}{2}$ plane.

Comment

Phenylalanine is an essential aromatic amino acid. In the study of the hydrogen-bonding and aggregation patterns of phenylalanine in the presence of inorganic acids, a number of crystal structures have been reported, viz. bis-dL-phenylalaninium sulfate monohydrate (Srinivasan et al., 2001), DLphenylalaninium dihydrogen phosphate (Ravikumar et al., 2001) and DL-phenylalaninium nitrate (Sridhar et al., 2002). In this paper, in a study of the structure of phenylalanine in the presence of an organic acid, the crystal structure of DLphenylalanine dL-phenylalaninium picrate, (I), is described.

The asymmetric unit of (I) (Fig. 1) comprises a zwitterionic phenylalanine, a phenylalaninium cation and a picrate anion. The bond distances and angles (Table 1) confirm the protonation of one of the phenylalanine residues.

In the zwitterionic phenylalanine residue, the backbone conformation angle ψ^{1} is in the cis form and ψ^{2} is in the trans form. The branched side-chain conformation angle χ^{1} is indicative of a gauche I form, and the angles χ^{21} and χ^{22} correspond to a folded conformation. These values are expected to lie in the range $90 \pm 30^{\circ}$ (Cotrait et al., 1984). For the protonated phenylalaninium residue, the conformation angles are as described above for the neutral molecule (Table 1). The picrate anion plays a vital role in the hydrogen bonding, as it links both residues via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds. The picrate O atoms ($\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4$ and O 7) participate in hydrogen bonds. One of the three nitro groups of the picrate anion is twisted from the plane of the ring (Soriano-Garcia et al., 1978).

Received 22 December 2004
Accepted 1 February 2005
Online 12 February 2005

Figure 1
The molecular structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. Molecules are orientated to indicate their relative orientations in the unit cell.

Figure 2
A packing diagram of the molecule of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.

The phenylalaninium residue forms a strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond [2.473 (5) Å] with a zwitterionic phenylalanine residue. An inversion-related $D L 1$ head-to-tail sequence ($D L$ refers to the inversion-related N and O atoms, and 1 refers to the cis O and N atoms) is also observed $\left[\mathrm{N} 11-\mathrm{H} 11 B-\mathrm{O} 1 A^{\mathrm{i}}\right.$; symmetry code: (i) $1-x, 1-y, 1-z$]. The phenylalaninium residue has a two-centred, a chelated three-centred and a fourcentred hydrogen bond. Because of the four-centred hydrogen bond and the chelation, the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bond angles are very low. Table 2 gives details of the hydrogen bonding. The amino group of the phenylalaninium residue connects two different picrate anions via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [N22$\mathrm{H} 22 A \cdots \mathrm{O} 2^{\mathrm{i}}$ and $\mathrm{N} 22-\mathrm{H} 22 B \cdots \mathrm{O} 1^{\text {iii }}$], resulting in an infinite chain along the a direction [symmetry code: (iii): $-x, 1-y$, $1-z]$.

The phenylalanine residue of (I) is an example of a class I hydrogen-bonding pattern, by having three two-centred hydrogen bonds (Jeffrey \& Saenger, 1991). In the crystal strucutre of (I) (Fig. 2), the hydrophobic double layers along the $y=0$ plane are sandwiched between hydrophilic layers along the $y=\frac{1}{2}$ plane.

Experimental

The title compound was crystallized by the slow evaporation at room temperature of a mixture containing equimolar quantities of DL-phenylalanine and picric acid.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$
$M_{r}=559.49$
Triclinic, $P \overline{1}$
$a=7.333$ (3) \AA 。
$b=13.737$ (3) \AA
$c=15.381$ (6) \AA
$\alpha=113.04(2)^{\circ}$
$\beta=94.93$ (4) ${ }^{\circ}$
$\gamma=105.23(3)^{\circ}$
$V=1344.2(9) \AA^{3}$
$Z=2$
$D_{x}=1.382 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius MACH3
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.974, T_{\text {max }}=0.987$
6021 measured reflections
4724 independent reflections
1945 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.188$
$S=0.93$
4724 reflections
362 parameters
H-atom parameters constrained

$$
\begin{aligned}
& R_{\text {int }}=0.048 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-1 \rightarrow 8 \\
& k=-16 \rightarrow 16 \\
& l=-18 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0907 P)^{2}\right. \\
& +0.223 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3} \\
& \text { Extinction correction: none }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{C} 11-\mathrm{O} 1 A$	$1.227(5)$	$\mathrm{C} 21-\mathrm{O} 2 A$	$1.211(5)$
$\mathrm{C} 11-\mathrm{O} 1 B$	$1.269(6)$	$\mathrm{C} 21-\mathrm{O} 2 B$	$1.298(5)$
$\mathrm{O} 1 A-\mathrm{C} 11-\mathrm{O} 1 B$	$126.0(4)$	$\mathrm{O} 2 A-\mathrm{C} 21-\mathrm{O} 2 B$	$125.3(4)$
$\mathrm{O} 1 A-\mathrm{C} 11-\mathrm{C} 12$	$120.9(5)$	$\mathrm{O} 2 A-\mathrm{C} 21-\mathrm{C} 22$	$122.8(4)$
$\mathrm{O} 1 B-\mathrm{C} 11-\mathrm{C} 12$	$113.1(4)$	$\mathrm{O} 2 B-\mathrm{C} 21-\mathrm{C} 22$	$111.9(4)$
$\mathrm{O} 1 A-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 11$	$15.2(6)$	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 29$	$69.7(6)$
$\mathrm{O} 1 B-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 11$	$-166.0(4)$	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$-111.1(6)$
$\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$80.3(5)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2-\mathrm{O} 5$	$-4.3(6)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 19$	$59.9(6)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2-\mathrm{O} 4$	$-4.4(6)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-124.4(5)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 3-\mathrm{O} 7$	$4.6(6)$
$\mathrm{O} 2 A-\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 22$	$11.3(6)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 3-\mathrm{O} 6$	$4.4(6)$
$\mathrm{O} 2 B-\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 22$	$-169.1(3)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{O} 2$	$25.9(6)$
$\mathrm{N} 22-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$59.8(5)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{O} 3$	$23.1(6)$

organic papers

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N11-H11A . . O 1	0.89	2.01	2.875 (4)	165
$\mathrm{N} 11-\mathrm{H} 11 B \cdots \mathrm{O} 1 A^{\mathrm{i}}$	0.89	2.07	2.923 (4)	159
$\mathrm{N} 11-\mathrm{H} 11 \mathrm{C} \cdots \mathrm{O} 2 A$	0.89	2.01	2.888 (4)	168
$\mathrm{N} 22-\mathrm{H} 22 A \cdots \mathrm{O}{ }^{\text {i }}$	0.89	2.60	3.037 (4)	111
$\mathrm{N} 22-\mathrm{H} 22 A \cdots \mathrm{O}{ }^{\mathrm{i}}$	0.89	2.48	3.266 (5)	148
$\mathrm{N} 22-\mathrm{H} 22 A \cdots \mathrm{O} 4^{\text {ii }}$	0.89	2.57	3.061 (4)	116
$\mathrm{N} 22-\mathrm{H} 22 \mathrm{C} \cdots \mathrm{O} 1 A$	0.89	2.00	2.883 (4)	174
$\mathrm{N} 22-\mathrm{H} 22 \mathrm{~B} \cdots \mathrm{O} 1^{\text {iii }}$	0.89	1.94	2.778 (5)	156
$\mathrm{N} 22-\mathrm{H} 22 B \cdots \mathrm{O} 7^{\text {iii }}$	0.89	2.40	3.036 (5)	129
$\mathrm{O} 2 B-\mathrm{H} 2 B \cdots \mathrm{O} 1 B^{\text {iv }}$	0.82	1.67	2.473 (5)	167

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x, y, z+1$; (iii) $-x,-y+1,-z+1$; (iv) $x-1, y, z$.

All H atoms were included in the refinement in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93$ (phenyl), 0.97 (methylene) and $0.98 \AA$ (methine), $\mathrm{N}-\mathrm{H}=0.89 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{O}, \mathrm{N})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the Department of Science and Technology, Government of India, for establishing a Single-Crystal Diffractometer Facility at the School of Physics, Madurai Kamaraj University, Madurai, through the FIST programme.

References

Cotrait, M., Bideau, J. P., Beurskens, G., Bosman, W. P. \& Beurskens, P. T. (1984). Acta Cryst. C40, 1412-1416.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin, Heidelberg, New York: Springer-Verlag.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ravikumar, B., Sridhar, B. \& Rajaram, R. K. (2001). Acta Cryst. E57, o1078o1080.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Soriano-Garcia, M., Srikrishnan, T. \& Parthasarathy, R. (1978). Acta Cryst. A34, S114.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sridhar, B., Srinivasan, N. \& Rajaram, R. K. (2002). Acta Cryst. E58, o1103o1105.
Srinivasan, N., Sridhar, B. \& Rajaram, R. K. (2001). Acta Cryst. E57, o772o774.

[^0]: (C) 2005 International Union of Crystallography

