Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

K. Anitha and R. K. Rajaram*

Department of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: rkrsopmku@yahoo.co.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.009 Å R factor = 0.062 wR factor = 0.188 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

DL-Phenylalanine DL-phenylalaninium picrate

In the title compound, $C_9H_{11}NO_2 \cdot C_9H_{12}NO_2^+ \cdot C_6H_2N_3O_7^-$, the phenylalanine cation forms a strong $O-H \cdot \cdot \cdot O$ hydrogen bond with a phenylalanine zwitterion and is involved in a *DL*1 head-to-tail sequence. Each of the phenylalanine residues adopts a folded conformation. In the crystal structure, the hydrophobic double layers are aggregated about the y = 0 plane and sandwiched between hydrophilic layers about the $y = \frac{1}{2}$ plane.

Received 22 December 2004 Accepted 1 February 2005 Online 12 February 2005

Comment

Phenylalanine is an essential aromatic amino acid. In the study of the hydrogen-bonding and aggregation patterns of phenylalanine in the presence of inorganic acids, a number of crystal structures have been reported, *viz*. bis-DL-phenylalaninium sulfate monohydrate (Srinivasan *et al.*, 2001), DLphenylalaninium dihydrogen phosphate (Ravikumar *et al.*, 2001) and DL-phenylalaninium nitrate (Sridhar *et al.*, 2002). In this paper, in a study of the structure of phenylalanine in the presence of an organic acid, the crystal structure of DLphenylalanine DL-phenylalaninium picrate, (I), is described.

The asymmetric unit of (I) (Fig. 1) comprises a zwitterionic phenylalanine, a phenylalaninium cation and a picrate anion. The bond distances and angles (Table 1) confirm the protonation of one of the phenylalanine residues.

In the zwitterionic phenylalanine residue, the backbone conformation angle ψ^1 is in the *cis* form and ψ^2 is in the *trans* form. The branched side-chain conformation angle χ^1 is indicative of a *gauche* I form, and the angles χ^{21} and χ^{22} correspond to a folded conformation. These values are expected to lie in the range $90\pm30^\circ$ (Cotrait *et al.*, 1984). For the protonated phenylalaninium residue, the conformation angles are as described above for the neutral molecule (Table 1). The picrate anion plays a vital role in the hydrogen bonding, as it links both residues *via* N–H···O bonds. The picrate O atoms (O1, O2, O3, O4 and O7) participate in hydrogen bonds. One of the three nitro groups of the picrate *al.*, 1978).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The molecular structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. Molecules are orientated to indicate their relative orientations in the unit cell.

Figure 2

A packing diagram of the molecule of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.

The phenylalaninium residue forms a strong O-H···O hydrogen bond [2.473 (5) Å] with a zwitterionic phenylalanine residue. An inversion-related DL1 head-to-tail sequence (DL refers to the inversion-related N and O atoms, and 1 refers to the *cis* O and N atoms) is also observed $[N11-H11B-O1A^{i}]$; symmetry code: (i) 1 - x, 1 - y, 1 - z]. The phenylalaninium residue has a two-centred, a chelated three-centred and a fourcentred hydrogen bond. Because of the four-centred hydrogen bond and the chelation, the $N-H\cdots O$ bond angles are very low. Table 2 gives details of the hydrogen bonding. The amino group of the phenylalaninium residue connects two different picrate anions via N-H···O hydrogen bonds [N22- $H22A \cdots O2^{i}$ and $N22 - H22B \cdots O1^{iii}$], resulting in an infinite chain along the **a** direction [symmetry code: (iii): -x, 1 - y, 1 - z].

The phenylalanine residue of (I) is an example of a class I hydrogen-bonding pattern, by having three two-centred hydrogen bonds (Jeffrey & Saenger, 1991). In the crystal strucutre of (I) (Fig. 2), the hydrophobic double layers along the y = 0 plane are sandwiched between hydrophilic layers along the $y = \frac{1}{2}$ plane.

Experimental

The title compound was crystallized by the slow evaporation at room temperature of a mixture containing equimolar quantities of DL-phenylalanine and picric acid.

Crystal data

$C_9H_{11}NO_2 \cdot C_9H_{12}NO_2^+ \cdot C_6H_2N_3O_7^-$	$D_m = 1.380 \text{ Mg m}^{-3}$
$M_r = 559.49$	D_m measured by flotation in carbon
Triclinic, $P\overline{1}$	tetrachloride and xylene
a = 7.333 (3) Å	Mo $K\alpha$ radiation
b = 13.737 (3) Å	Cell parameters from 25
c = 15.381 (6) Å	reflections
$\alpha = 113.04 \ (2)^{\circ}$	$\theta = 8.4 - 13.9^{\circ}$
$\beta = 94.93 \ (4)^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$
$\gamma = 105.23 \ (3)^{\circ}$	T = 293 (2) K
V = 1344.2 (9) Å ³	Block, yellow
Z = 2	$0.3 \times 0.2 \times 0.12 \text{ mm}$
$D_x = 1.382 \text{ Mg m}^{-3}$	

Data collection

Enraf-Nonius MACH3	$R_{\rm int} = 0.048$
diffractometer	$\theta_{\rm max} = 25.0^{\circ}$
$\omega/2\theta$ scans	$h = -1 \rightarrow 8$
Absorption correction: ψ scan	$k = -16 \rightarrow 16$
(North et al., 1968)	$l = -18 \rightarrow 18$
$T_{\min} = 0.974, \ T_{\max} = 0.987$	3 standard reflections
6021 measured reflections	frequency: 60 min
4724 independent reflections	intensity decay: none
1945 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0907P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.062$	+ 0.223P]
$vR(F^2) = 0.188$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.93	$(\Delta/\sigma)_{\rm max} < 0.001$
1724 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm A}^{-3}$
362 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: none

Table 1

Selected geometric parameters (Å, °).

C11-O1A	1.227 (5)	C21-O2A	1.211 (5)
C11-O1B	1.269 (6)	C21-O2B	1.298 (5)
O1A-C11-O1B	126.0 (4)	O2A-C21-O2B	125.3 (4)
O1A-C11-C12	120.9 (5)	O2A-C21-C22	122.8 (4)
O1B-C11-C12	113.1 (4)	O2B-C21-C22	111.9 (4)
O1A-C11-C12-N11	15.2 (6)	C22-C23-C24-C29	69.7 (6)
O1 <i>B</i> -C11-C12-N11	-166.0(4)	C22-C23-C24-C25	-111.1 (6)
N11-C12-C13-C14	80.3 (5)	C4-C3-N2-O5	-4.3(6)
C12-C13-C14-C19	59.9 (6)	C2-C3-N2-O4	-4.4(6)
C12-C13-C14-C15	-124.4(5)	C6-C5-N3-O7	4.6 (6)
O2A-C21-C22-N22	11.3 (6)	C4-C5-N3-O6	4.4 (6)
O2B-C21-C22-N22	-169.1(3)	C6-C1-N1-O2	25.9 (6)
N22-C22-C23-C24	59.8 (5)	C2-C1-N1-O3	23.1 (6)
	. ,		

Table 2		
Hydrogen-bond geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N11-H11A····O1	0.89	2.01	2.875 (4)	165
N11-H11 B ···O1 A^{i}	0.89	2.07	2.923 (4)	159
$N11 - H11C \cdot \cdot \cdot O2A$	0.89	2.01	2.888 (4)	168
$N22-H22A\cdots O2^{i}$	0.89	2.60	3.037 (4)	111
$N22-H22A\cdots O3^{i}$	0.89	2.48	3.266 (5)	148
$N22-H22A\cdots O4^{ii}$	0.89	2.57	3.061 (4)	116
N22-H22 C ···O1 A	0.89	2.00	2.883 (4)	174
$N22-H22B\cdots O1^{iii}$	0.89	1.94	2.778 (5)	156
$N22 - H22B \cdot \cdot \cdot O7^{iii}$	0.89	2.40	3.036 (5)	129
$O2B - H2B \cdots O1B^{iv}$	0.82	1.67	2.473 (5)	167

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y, z + 1; (iii) -x, -y + 1, -z + 1; (iv) x - 1, y, z.

All H atoms were included in the refinement in the riding-model approximation, with C–H = 0.93 (phenyl), 0.97 (methylene) and 0.98 Å (methine), N–H = 0.89 Å and O–H = 0.82 Å, and with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm O},{\rm N})$.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank the Department of Science and Technology, Government of India, for establishing a Single-Crystal Diffractometer Facility at the School of Physics, Madurai Kamaraj University, Madurai, through the FIST programme.

References

- Cotrait, M., Bideau, J. P., Beurskens, G., Bosman, W. P. & Beurskens, P. T. (1984). Acta Cryst. C40, 1412–1416.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin, Heidelberg, New York: Springer-Verlag.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Ravikumar, B., Sridhar, B. & Rajaram, R. K. (2001). Acta Cryst. E57, o1078-01080.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Soriano-Garcia, M., Srikrishnan, T. & Parthasarathy, R. (1978). Acta Cryst. A34, S114.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2002). Acta Cryst. E58, o1103– 01105.
- Srinivasan, N., Sridhar, B. & Rajaram, R. K. (2001). Acta Cryst. E57, 0772– 0774.